mirror of
https://codeberg.org/grunfink/snac2.git
synced 2024-11-27 15:13:39 +00:00
238 lines
5.5 KiB
C
238 lines
5.5 KiB
C
/* copyright (c) 2022 - 2024 grunfink et al. / MIT license */
|
|
|
|
#ifndef _XS_OPENSSL_H
|
|
|
|
#define _XS_OPENSSL_H
|
|
|
|
xs_str *_xs_digest(const xs_val *input, int size, const char *digest, int as_hex);
|
|
|
|
#ifndef _XS_MD5_H
|
|
#define xs_md5_hex(input, size) _xs_digest(input, size, "md5", 1)
|
|
#endif /* XS_MD5_H */
|
|
|
|
#ifndef _XS_BASE64_H
|
|
xs_str *xs_base64_enc(const xs_val *data, int sz);
|
|
xs_val *xs_base64_dec(const xs_str *data, int *size);
|
|
#endif /* XS_BASE64_H */
|
|
|
|
#define xs_sha1_hex(input, size) _xs_digest(input, size, "sha1", 1)
|
|
#define xs_sha256_hex(input, size) _xs_digest(input, size, "sha256", 1)
|
|
#define xs_sha256_base64(input, size) _xs_digest(input, size, "sha256", 0)
|
|
|
|
xs_dict *xs_evp_genkey(int bits);
|
|
xs_str *xs_evp_sign(const char *secret, const char *mem, int size);
|
|
int xs_evp_verify(const char *pubkey, const char *mem, int size, const char *b64sig);
|
|
|
|
|
|
#ifdef XS_IMPLEMENTATION
|
|
|
|
#include "openssl/rsa.h"
|
|
#include "openssl/pem.h"
|
|
#include "openssl/evp.h"
|
|
|
|
|
|
#ifndef _XS_BASE64_H
|
|
|
|
xs_str *xs_base64_enc(const xs_val *data, int sz)
|
|
/* encodes data to base64 */
|
|
{
|
|
BIO *mem, *b64;
|
|
BUF_MEM *bptr;
|
|
|
|
b64 = BIO_new(BIO_f_base64());
|
|
mem = BIO_new(BIO_s_mem());
|
|
b64 = BIO_push(b64, mem);
|
|
|
|
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
|
|
|
|
BIO_write(b64, data, sz);
|
|
BIO_flush(b64);
|
|
BIO_get_mem_ptr(b64, &bptr);
|
|
|
|
int n = bptr->length;
|
|
xs_str *s = xs_realloc(NULL, _xs_blk_size(n + 1));
|
|
|
|
memcpy(s, bptr->data, n);
|
|
s[n] = '\0';
|
|
|
|
BIO_free_all(b64);
|
|
|
|
return s;
|
|
}
|
|
|
|
|
|
xs_val *xs_base64_dec(const xs_str *data, int *size)
|
|
/* decodes data from base64 */
|
|
{
|
|
BIO *b64, *mem;
|
|
|
|
*size = strlen(data);
|
|
|
|
b64 = BIO_new(BIO_f_base64());
|
|
mem = BIO_new_mem_buf(data, *size);
|
|
b64 = BIO_push(b64, mem);
|
|
|
|
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
|
|
|
|
/* alloc a very big buffer */
|
|
xs_str *s = xs_realloc(NULL, *size);
|
|
|
|
*size = BIO_read(b64, s, *size);
|
|
|
|
/* adjust to current size */
|
|
s = xs_realloc(s, _xs_blk_size(*size + 1));
|
|
s[*size] = '\0';
|
|
|
|
BIO_free_all(mem);
|
|
|
|
return s;
|
|
}
|
|
|
|
#endif /* _XS_BASE64_H */
|
|
|
|
|
|
xs_str *_xs_digest(const xs_val *input, int size, const char *digest, int as_hex)
|
|
/* generic function for generating and encoding digests */
|
|
{
|
|
const EVP_MD *md;
|
|
|
|
if ((md = EVP_get_digestbyname(digest)) == NULL)
|
|
return NULL;
|
|
|
|
unsigned char output[1024];
|
|
unsigned int out_size;
|
|
EVP_MD_CTX *mdctx;
|
|
|
|
mdctx = EVP_MD_CTX_new();
|
|
EVP_DigestInit_ex(mdctx, md, NULL);
|
|
EVP_DigestUpdate(mdctx, input, size);
|
|
EVP_DigestFinal_ex(mdctx, output, &out_size);
|
|
EVP_MD_CTX_free(mdctx);
|
|
|
|
return as_hex ? xs_hex_enc ((char *)output, out_size) :
|
|
xs_base64_enc((char *)output, out_size);
|
|
}
|
|
|
|
|
|
xs_dict *xs_evp_genkey(int bits)
|
|
/* generates an RSA keypair using the EVP interface */
|
|
{
|
|
xs_dict *keypair = NULL;
|
|
EVP_PKEY_CTX *ctx;
|
|
EVP_PKEY *pkey = NULL;
|
|
|
|
if ((ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL)) == NULL)
|
|
goto end;
|
|
|
|
if (EVP_PKEY_keygen_init(ctx) <= 0 ||
|
|
EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, bits) <= 0 ||
|
|
EVP_PKEY_keygen(ctx, &pkey) <= 0)
|
|
goto end;
|
|
|
|
BIO *bs = BIO_new(BIO_s_mem());
|
|
BIO *bp = BIO_new(BIO_s_mem());
|
|
BUF_MEM *sptr;
|
|
BUF_MEM *pptr;
|
|
|
|
PEM_write_bio_PrivateKey(bs, pkey, NULL, NULL, 0, 0, NULL);
|
|
BIO_get_mem_ptr(bs, &sptr);
|
|
|
|
PEM_write_bio_PUBKEY(bp, pkey);
|
|
BIO_get_mem_ptr(bp, &pptr);
|
|
|
|
keypair = xs_dict_new();
|
|
|
|
keypair = xs_dict_append(keypair, "secret", sptr->data);
|
|
keypair = xs_dict_append(keypair, "public", pptr->data);
|
|
|
|
BIO_free(bs);
|
|
BIO_free(bp);
|
|
|
|
end:
|
|
return keypair;
|
|
}
|
|
|
|
|
|
xs_str *xs_evp_sign(const char *secret, const char *mem, int size)
|
|
/* signs a memory block (secret is in PEM format) */
|
|
{
|
|
xs_str *signature = NULL;
|
|
BIO *b;
|
|
unsigned char *sig;
|
|
unsigned int sig_len;
|
|
EVP_PKEY *pkey;
|
|
EVP_MD_CTX *mdctx;
|
|
const EVP_MD *md;
|
|
|
|
/* un-PEM the key */
|
|
b = BIO_new_mem_buf(secret, strlen(secret));
|
|
pkey = PEM_read_bio_PrivateKey(b, NULL, NULL, NULL);
|
|
|
|
/* I've learnt all these magical incantations by watching
|
|
the Python module code and the OpenSSL manual pages */
|
|
/* Well, "learnt" may be an overstatement */
|
|
|
|
md = EVP_get_digestbyname("sha256");
|
|
|
|
mdctx = EVP_MD_CTX_new();
|
|
|
|
sig_len = EVP_PKEY_size(pkey);
|
|
sig = xs_realloc(NULL, sig_len);
|
|
|
|
EVP_SignInit(mdctx, md);
|
|
EVP_SignUpdate(mdctx, mem, size);
|
|
|
|
if (EVP_SignFinal(mdctx, sig, &sig_len, pkey) == 1)
|
|
signature = xs_base64_enc((char *)sig, sig_len);
|
|
|
|
EVP_MD_CTX_free(mdctx);
|
|
EVP_PKEY_free(pkey);
|
|
BIO_free(b);
|
|
xs_free(sig);
|
|
|
|
return signature;
|
|
}
|
|
|
|
|
|
int xs_evp_verify(const char *pubkey, const char *mem, int size, const char *b64sig)
|
|
/* verifies a base64 block, returns non-zero on ok */
|
|
{
|
|
int r = 0;
|
|
BIO *b;
|
|
EVP_PKEY *pkey;
|
|
EVP_MD_CTX *mdctx;
|
|
const EVP_MD *md;
|
|
|
|
/* un-PEM the key */
|
|
b = BIO_new_mem_buf(pubkey, strlen(pubkey));
|
|
pkey = PEM_read_bio_PUBKEY(b, NULL, NULL, NULL);
|
|
|
|
md = EVP_get_digestbyname("sha256");
|
|
mdctx = EVP_MD_CTX_new();
|
|
|
|
if (pkey != NULL) {
|
|
xs *sig = NULL;
|
|
int s_size;
|
|
|
|
/* de-base64 */
|
|
sig = xs_base64_dec(b64sig, &s_size);
|
|
|
|
if (sig != NULL) {
|
|
EVP_VerifyInit(mdctx, md);
|
|
EVP_VerifyUpdate(mdctx, mem, size);
|
|
|
|
r = EVP_VerifyFinal(mdctx, (unsigned char *)sig, s_size, pkey);
|
|
}
|
|
}
|
|
|
|
EVP_MD_CTX_free(mdctx);
|
|
EVP_PKEY_free(pkey);
|
|
BIO_free(b);
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
#endif /* XS_IMPLEMENTATION */
|
|
|
|
#endif /* _XS_OPENSSL_H */
|