mirror of
https://github.com/SickGear/SickGear.git
synced 2024-11-27 15:13:38 +00:00
162 lines
6.1 KiB
Python
162 lines
6.1 KiB
Python
######################## BEGIN LICENSE BLOCK ########################
|
|
# This code was modified from latin1prober.py by Rob Speer <rob@lumino.so>.
|
|
# The Original Code is Mozilla Universal charset detector code.
|
|
#
|
|
# The Initial Developer of the Original Code is
|
|
# Netscape Communications Corporation.
|
|
# Portions created by the Initial Developer are Copyright (C) 2001
|
|
# the Initial Developer. All Rights Reserved.
|
|
#
|
|
# Contributor(s):
|
|
# Rob Speer - adapt to MacRoman encoding
|
|
# Mark Pilgrim - port to Python
|
|
# Shy Shalom - original C code
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License, or (at your option) any later version.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, write to the Free Software
|
|
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
# 02110-1301 USA
|
|
######################### END LICENSE BLOCK #########################
|
|
|
|
from typing import List, Union
|
|
|
|
from .charsetprober import CharSetProber
|
|
from .enums import ProbingState
|
|
|
|
FREQ_CAT_NUM = 4
|
|
|
|
UDF = 0 # undefined
|
|
OTH = 1 # other
|
|
ASC = 2 # ascii capital letter
|
|
ASS = 3 # ascii small letter
|
|
ACV = 4 # accent capital vowel
|
|
ACO = 5 # accent capital other
|
|
ASV = 6 # accent small vowel
|
|
ASO = 7 # accent small other
|
|
ODD = 8 # character that is unlikely to appear
|
|
CLASS_NUM = 9 # total classes
|
|
|
|
# The change from Latin1 is that we explicitly look for extended characters
|
|
# that are infrequently-occurring symbols, and consider them to always be
|
|
# improbable. This should let MacRoman get out of the way of more likely
|
|
# encodings in most situations.
|
|
|
|
# fmt: off
|
|
MacRoman_CharToClass = (
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 00 - 07
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 08 - 0F
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 10 - 17
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 18 - 1F
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 20 - 27
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 28 - 2F
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 30 - 37
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # 38 - 3F
|
|
OTH, ASC, ASC, ASC, ASC, ASC, ASC, ASC, # 40 - 47
|
|
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC, # 48 - 4F
|
|
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC, # 50 - 57
|
|
ASC, ASC, ASC, OTH, OTH, OTH, OTH, OTH, # 58 - 5F
|
|
OTH, ASS, ASS, ASS, ASS, ASS, ASS, ASS, # 60 - 67
|
|
ASS, ASS, ASS, ASS, ASS, ASS, ASS, ASS, # 68 - 6F
|
|
ASS, ASS, ASS, ASS, ASS, ASS, ASS, ASS, # 70 - 77
|
|
ASS, ASS, ASS, OTH, OTH, OTH, OTH, OTH, # 78 - 7F
|
|
ACV, ACV, ACO, ACV, ACO, ACV, ACV, ASV, # 80 - 87
|
|
ASV, ASV, ASV, ASV, ASV, ASO, ASV, ASV, # 88 - 8F
|
|
ASV, ASV, ASV, ASV, ASV, ASV, ASO, ASV, # 90 - 97
|
|
ASV, ASV, ASV, ASV, ASV, ASV, ASV, ASV, # 98 - 9F
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, ASO, # A0 - A7
|
|
OTH, OTH, ODD, ODD, OTH, OTH, ACV, ACV, # A8 - AF
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, OTH, # B0 - B7
|
|
OTH, OTH, OTH, OTH, OTH, OTH, ASV, ASV, # B8 - BF
|
|
OTH, OTH, ODD, OTH, ODD, OTH, OTH, OTH, # C0 - C7
|
|
OTH, OTH, OTH, ACV, ACV, ACV, ACV, ASV, # C8 - CF
|
|
OTH, OTH, OTH, OTH, OTH, OTH, OTH, ODD, # D0 - D7
|
|
ASV, ACV, ODD, OTH, OTH, OTH, OTH, OTH, # D8 - DF
|
|
OTH, OTH, OTH, OTH, OTH, ACV, ACV, ACV, # E0 - E7
|
|
ACV, ACV, ACV, ACV, ACV, ACV, ACV, ACV, # E8 - EF
|
|
ODD, ACV, ACV, ACV, ACV, ASV, ODD, ODD, # F0 - F7
|
|
ODD, ODD, ODD, ODD, ODD, ODD, ODD, ODD, # F8 - FF
|
|
)
|
|
|
|
# 0 : illegal
|
|
# 1 : very unlikely
|
|
# 2 : normal
|
|
# 3 : very likely
|
|
MacRomanClassModel = (
|
|
# UDF OTH ASC ASS ACV ACO ASV ASO ODD
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, # UDF
|
|
0, 3, 3, 3, 3, 3, 3, 3, 1, # OTH
|
|
0, 3, 3, 3, 3, 3, 3, 3, 1, # ASC
|
|
0, 3, 3, 3, 1, 1, 3, 3, 1, # ASS
|
|
0, 3, 3, 3, 1, 2, 1, 2, 1, # ACV
|
|
0, 3, 3, 3, 3, 3, 3, 3, 1, # ACO
|
|
0, 3, 1, 3, 1, 1, 1, 3, 1, # ASV
|
|
0, 3, 1, 3, 1, 1, 3, 3, 1, # ASO
|
|
0, 1, 1, 1, 1, 1, 1, 1, 1, # ODD
|
|
)
|
|
# fmt: on
|
|
|
|
|
|
class MacRomanProber(CharSetProber):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
self._last_char_class = OTH
|
|
self._freq_counter: List[int] = []
|
|
self.reset()
|
|
|
|
def reset(self) -> None:
|
|
self._last_char_class = OTH
|
|
self._freq_counter = [0] * FREQ_CAT_NUM
|
|
|
|
# express the prior that MacRoman is a somewhat rare encoding;
|
|
# this can be done by starting out in a slightly improbable state
|
|
# that must be overcome
|
|
self._freq_counter[2] = 10
|
|
|
|
super().reset()
|
|
|
|
@property
|
|
def charset_name(self) -> str:
|
|
return "MacRoman"
|
|
|
|
@property
|
|
def language(self) -> str:
|
|
return ""
|
|
|
|
def feed(self, byte_str: Union[bytes, bytearray]) -> ProbingState:
|
|
byte_str = self.remove_xml_tags(byte_str)
|
|
for c in byte_str:
|
|
char_class = MacRoman_CharToClass[c]
|
|
freq = MacRomanClassModel[(self._last_char_class * CLASS_NUM) + char_class]
|
|
if freq == 0:
|
|
self._state = ProbingState.NOT_ME
|
|
break
|
|
self._freq_counter[freq] += 1
|
|
self._last_char_class = char_class
|
|
|
|
return self.state
|
|
|
|
def get_confidence(self) -> float:
|
|
if self.state == ProbingState.NOT_ME:
|
|
return 0.01
|
|
|
|
total = sum(self._freq_counter)
|
|
confidence = (
|
|
0.0
|
|
if total < 0.01
|
|
else (self._freq_counter[3] - self._freq_counter[1] * 20.0) / total
|
|
)
|
|
confidence = max(confidence, 0.0)
|
|
# lower the confidence of MacRoman so that other more accurate
|
|
# detector can take priority.
|
|
confidence *= 0.73
|
|
return confidence
|