mirror of
https://github.com/SickGear/SickGear.git
synced 2025-01-07 10:33:38 +00:00
378 lines
14 KiB
Python
378 lines
14 KiB
Python
|
# Copyright (c) 2012 Mitch Garnaat http://garnaat.org/
|
||
|
# Copyright (c) 2012 Amazon.com, Inc. or its affiliates.
|
||
|
# All Rights Reserved
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a
|
||
|
# copy of this software and associated documentation files (the
|
||
|
# "Software"), to deal in the Software without restriction, including
|
||
|
# without limitation the rights to use, copy, modify, merge, publish, dis-
|
||
|
# tribute, sublicense, and/or sell copies of the Software, and to permit
|
||
|
# persons to whom the Software is furnished to do so, subject to the fol-
|
||
|
# lowing conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included
|
||
|
# in all copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
||
|
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL-
|
||
|
# ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
|
||
|
# SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
||
|
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
||
|
# IN THE SOFTWARE.
|
||
|
#
|
||
|
from math import ceil
|
||
|
from boto.compat import json, map, six
|
||
|
import requests
|
||
|
|
||
|
|
||
|
class SearchServiceException(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class CommitMismatchError(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class SearchResults(object):
|
||
|
def __init__(self, **attrs):
|
||
|
self.rid = attrs['info']['rid']
|
||
|
# self.doc_coverage_pct = attrs['info']['doc-coverage-pct']
|
||
|
self.cpu_time_ms = attrs['info']['cpu-time-ms']
|
||
|
self.time_ms = attrs['info']['time-ms']
|
||
|
self.hits = attrs['hits']['found']
|
||
|
self.docs = attrs['hits']['hit']
|
||
|
self.start = attrs['hits']['start']
|
||
|
self.rank = attrs['rank']
|
||
|
self.match_expression = attrs['match-expr']
|
||
|
self.query = attrs['query']
|
||
|
self.search_service = attrs['search_service']
|
||
|
|
||
|
self.facets = {}
|
||
|
if 'facets' in attrs:
|
||
|
for (facet, values) in attrs['facets'].items():
|
||
|
if 'constraints' in values:
|
||
|
self.facets[facet] = dict((k, v) for (k, v) in map(lambda x: (x['value'], x['count']), values['constraints']))
|
||
|
|
||
|
self.num_pages_needed = ceil(self.hits / self.query.real_size)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.docs)
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self.docs)
|
||
|
|
||
|
def next_page(self):
|
||
|
"""Call Cloudsearch to get the next page of search results
|
||
|
|
||
|
:rtype: :class:`boto.cloudsearch.search.SearchResults`
|
||
|
:return: the following page of search results
|
||
|
"""
|
||
|
if self.query.page <= self.num_pages_needed:
|
||
|
self.query.start += self.query.real_size
|
||
|
self.query.page += 1
|
||
|
return self.search_service(self.query)
|
||
|
else:
|
||
|
raise StopIteration
|
||
|
|
||
|
|
||
|
class Query(object):
|
||
|
|
||
|
RESULTS_PER_PAGE = 500
|
||
|
|
||
|
def __init__(self, q=None, bq=None, rank=None,
|
||
|
return_fields=None, size=10,
|
||
|
start=0, facet=None, facet_constraints=None,
|
||
|
facet_sort=None, facet_top_n=None, t=None):
|
||
|
|
||
|
self.q = q
|
||
|
self.bq = bq
|
||
|
self.rank = rank or []
|
||
|
self.return_fields = return_fields or []
|
||
|
self.start = start
|
||
|
self.facet = facet or []
|
||
|
self.facet_constraints = facet_constraints or {}
|
||
|
self.facet_sort = facet_sort or {}
|
||
|
self.facet_top_n = facet_top_n or {}
|
||
|
self.t = t or {}
|
||
|
self.page = 0
|
||
|
self.update_size(size)
|
||
|
|
||
|
def update_size(self, new_size):
|
||
|
self.size = new_size
|
||
|
self.real_size = Query.RESULTS_PER_PAGE if (self.size >
|
||
|
Query.RESULTS_PER_PAGE or self.size == 0) else self.size
|
||
|
|
||
|
def to_params(self):
|
||
|
"""Transform search parameters from instance properties to a dictionary
|
||
|
|
||
|
:rtype: dict
|
||
|
:return: search parameters
|
||
|
"""
|
||
|
params = {'start': self.start, 'size': self.real_size}
|
||
|
|
||
|
if self.q:
|
||
|
params['q'] = self.q
|
||
|
|
||
|
if self.bq:
|
||
|
params['bq'] = self.bq
|
||
|
|
||
|
if self.rank:
|
||
|
params['rank'] = ','.join(self.rank)
|
||
|
|
||
|
if self.return_fields:
|
||
|
params['return-fields'] = ','.join(self.return_fields)
|
||
|
|
||
|
if self.facet:
|
||
|
params['facet'] = ','.join(self.facet)
|
||
|
|
||
|
if self.facet_constraints:
|
||
|
for k, v in six.iteritems(self.facet_constraints):
|
||
|
params['facet-%s-constraints' % k] = v
|
||
|
|
||
|
if self.facet_sort:
|
||
|
for k, v in six.iteritems(self.facet_sort):
|
||
|
params['facet-%s-sort' % k] = v
|
||
|
|
||
|
if self.facet_top_n:
|
||
|
for k, v in six.iteritems(self.facet_top_n):
|
||
|
params['facet-%s-top-n' % k] = v
|
||
|
|
||
|
if self.t:
|
||
|
for k, v in six.iteritems(self.t):
|
||
|
params['t-%s' % k] = v
|
||
|
return params
|
||
|
|
||
|
|
||
|
class SearchConnection(object):
|
||
|
|
||
|
def __init__(self, domain=None, endpoint=None):
|
||
|
self.domain = domain
|
||
|
self.endpoint = endpoint
|
||
|
if not endpoint:
|
||
|
self.endpoint = domain.search_service_endpoint
|
||
|
|
||
|
def build_query(self, q=None, bq=None, rank=None, return_fields=None,
|
||
|
size=10, start=0, facet=None, facet_constraints=None,
|
||
|
facet_sort=None, facet_top_n=None, t=None):
|
||
|
return Query(q=q, bq=bq, rank=rank, return_fields=return_fields,
|
||
|
size=size, start=start, facet=facet,
|
||
|
facet_constraints=facet_constraints,
|
||
|
facet_sort=facet_sort, facet_top_n=facet_top_n, t=t)
|
||
|
|
||
|
def search(self, q=None, bq=None, rank=None, return_fields=None,
|
||
|
size=10, start=0, facet=None, facet_constraints=None,
|
||
|
facet_sort=None, facet_top_n=None, t=None):
|
||
|
"""
|
||
|
Send a query to CloudSearch
|
||
|
|
||
|
Each search query should use at least the q or bq argument to specify
|
||
|
the search parameter. The other options are used to specify the
|
||
|
criteria of the search.
|
||
|
|
||
|
:type q: string
|
||
|
:param q: A string to search the default search fields for.
|
||
|
|
||
|
:type bq: string
|
||
|
:param bq: A string to perform a Boolean search. This can be used to
|
||
|
create advanced searches.
|
||
|
|
||
|
:type rank: List of strings
|
||
|
:param rank: A list of fields or rank expressions used to order the
|
||
|
search results. A field can be reversed by using the - operator.
|
||
|
``['-year', 'author']``
|
||
|
|
||
|
:type return_fields: List of strings
|
||
|
:param return_fields: A list of fields which should be returned by the
|
||
|
search. If this field is not specified, only IDs will be returned.
|
||
|
``['headline']``
|
||
|
|
||
|
:type size: int
|
||
|
:param size: Number of search results to specify
|
||
|
|
||
|
:type start: int
|
||
|
:param start: Offset of the first search result to return (can be used
|
||
|
for paging)
|
||
|
|
||
|
:type facet: list
|
||
|
:param facet: List of fields for which facets should be returned
|
||
|
``['colour', 'size']``
|
||
|
|
||
|
:type facet_constraints: dict
|
||
|
:param facet_constraints: Use to limit facets to specific values
|
||
|
specified as comma-delimited strings in a Dictionary of facets
|
||
|
``{'colour': "'blue','white','red'", 'size': "big"}``
|
||
|
|
||
|
:type facet_sort: dict
|
||
|
:param facet_sort: Rules used to specify the order in which facet
|
||
|
values should be returned. Allowed values are *alpha*, *count*,
|
||
|
*max*, *sum*. Use *alpha* to sort alphabetical, and *count* to sort
|
||
|
the facet by number of available result.
|
||
|
``{'color': 'alpha', 'size': 'count'}``
|
||
|
|
||
|
:type facet_top_n: dict
|
||
|
:param facet_top_n: Dictionary of facets and number of facets to
|
||
|
return.
|
||
|
``{'colour': 2}``
|
||
|
|
||
|
:type t: dict
|
||
|
:param t: Specify ranges for specific fields
|
||
|
``{'year': '2000..2005'}``
|
||
|
|
||
|
:rtype: :class:`boto.cloudsearch.search.SearchResults`
|
||
|
:return: Returns the results of this search
|
||
|
|
||
|
The following examples all assume we have indexed a set of documents
|
||
|
with fields: *author*, *date*, *headline*
|
||
|
|
||
|
A simple search will look for documents whose default text search
|
||
|
fields will contain the search word exactly:
|
||
|
|
||
|
>>> search(q='Tim') # Return documents with the word Tim in them (but not Timothy)
|
||
|
|
||
|
A simple search with more keywords will return documents whose default
|
||
|
text search fields contain the search strings together or separately.
|
||
|
|
||
|
>>> search(q='Tim apple') # Will match "tim" and "apple"
|
||
|
|
||
|
More complex searches require the boolean search operator.
|
||
|
|
||
|
Wildcard searches can be used to search for any words that start with
|
||
|
the search string.
|
||
|
|
||
|
>>> search(bq="'Tim*'") # Return documents with words like Tim or Timothy)
|
||
|
|
||
|
Search terms can also be combined. Allowed operators are "and", "or",
|
||
|
"not", "field", "optional", "token", "phrase", or "filter"
|
||
|
|
||
|
>>> search(bq="(and 'Tim' (field author 'John Smith'))")
|
||
|
|
||
|
Facets allow you to show classification information about the search
|
||
|
results. For example, you can retrieve the authors who have written
|
||
|
about Tim:
|
||
|
|
||
|
>>> search(q='Tim', facet=['Author'])
|
||
|
|
||
|
With facet_constraints, facet_top_n and facet_sort more complicated
|
||
|
constraints can be specified such as returning the top author out of
|
||
|
John Smith and Mark Smith who have a document with the word Tim in it.
|
||
|
|
||
|
>>> search(q='Tim',
|
||
|
... facet=['Author'],
|
||
|
... facet_constraints={'author': "'John Smith','Mark Smith'"},
|
||
|
... facet=['author'],
|
||
|
... facet_top_n={'author': 1},
|
||
|
... facet_sort={'author': 'count'})
|
||
|
"""
|
||
|
|
||
|
query = self.build_query(q=q, bq=bq, rank=rank,
|
||
|
return_fields=return_fields,
|
||
|
size=size, start=start, facet=facet,
|
||
|
facet_constraints=facet_constraints,
|
||
|
facet_sort=facet_sort,
|
||
|
facet_top_n=facet_top_n, t=t)
|
||
|
return self(query)
|
||
|
|
||
|
def __call__(self, query):
|
||
|
"""Make a call to CloudSearch
|
||
|
|
||
|
:type query: :class:`boto.cloudsearch.search.Query`
|
||
|
:param query: A group of search criteria
|
||
|
|
||
|
:rtype: :class:`boto.cloudsearch.search.SearchResults`
|
||
|
:return: search results
|
||
|
"""
|
||
|
url = "http://%s/2011-02-01/search" % (self.endpoint)
|
||
|
params = query.to_params()
|
||
|
|
||
|
r = requests.get(url, params=params)
|
||
|
body = r.content.decode('utf-8')
|
||
|
try:
|
||
|
data = json.loads(body)
|
||
|
except ValueError as e:
|
||
|
if r.status_code == 403:
|
||
|
msg = ''
|
||
|
import re
|
||
|
g = re.search('<html><body><h1>403 Forbidden</h1>([^<]+)<', body)
|
||
|
try:
|
||
|
msg = ': %s' % (g.groups()[0].strip())
|
||
|
except AttributeError:
|
||
|
pass
|
||
|
raise SearchServiceException('Authentication error from Amazon%s' % msg)
|
||
|
raise SearchServiceException("Got non-json response from Amazon. %s" % body, query)
|
||
|
|
||
|
if 'messages' in data and 'error' in data:
|
||
|
for m in data['messages']:
|
||
|
if m['severity'] == 'fatal':
|
||
|
raise SearchServiceException("Error processing search %s "
|
||
|
"=> %s" % (params, m['message']), query)
|
||
|
elif 'error' in data:
|
||
|
raise SearchServiceException("Unknown error processing search %s"
|
||
|
% json.dumps(data), query)
|
||
|
|
||
|
data['query'] = query
|
||
|
data['search_service'] = self
|
||
|
|
||
|
return SearchResults(**data)
|
||
|
|
||
|
def get_all_paged(self, query, per_page):
|
||
|
"""Get a generator to iterate over all pages of search results
|
||
|
|
||
|
:type query: :class:`boto.cloudsearch.search.Query`
|
||
|
:param query: A group of search criteria
|
||
|
|
||
|
:type per_page: int
|
||
|
:param per_page: Number of docs in each :class:`boto.cloudsearch.search.SearchResults` object.
|
||
|
|
||
|
:rtype: generator
|
||
|
:return: Generator containing :class:`boto.cloudsearch.search.SearchResults`
|
||
|
"""
|
||
|
query.update_size(per_page)
|
||
|
page = 0
|
||
|
num_pages_needed = 0
|
||
|
while page <= num_pages_needed:
|
||
|
results = self(query)
|
||
|
num_pages_needed = results.num_pages_needed
|
||
|
yield results
|
||
|
query.start += query.real_size
|
||
|
page += 1
|
||
|
|
||
|
def get_all_hits(self, query):
|
||
|
"""Get a generator to iterate over all search results
|
||
|
|
||
|
Transparently handles the results paging from Cloudsearch
|
||
|
search results so even if you have many thousands of results
|
||
|
you can iterate over all results in a reasonably efficient
|
||
|
manner.
|
||
|
|
||
|
:type query: :class:`boto.cloudsearch.search.Query`
|
||
|
:param query: A group of search criteria
|
||
|
|
||
|
:rtype: generator
|
||
|
:return: All docs matching query
|
||
|
"""
|
||
|
page = 0
|
||
|
num_pages_needed = 0
|
||
|
while page <= num_pages_needed:
|
||
|
results = self(query)
|
||
|
num_pages_needed = results.num_pages_needed
|
||
|
for doc in results:
|
||
|
yield doc
|
||
|
query.start += query.real_size
|
||
|
page += 1
|
||
|
|
||
|
def get_num_hits(self, query):
|
||
|
"""Return the total number of hits for query
|
||
|
|
||
|
:type query: :class:`boto.cloudsearch.search.Query`
|
||
|
:param query: a group of search criteria
|
||
|
|
||
|
:rtype: int
|
||
|
:return: Total number of hits for query
|
||
|
"""
|
||
|
query.update_size(1)
|
||
|
return self(query).hits
|
||
|
|
||
|
|
||
|
|