mirror of
https://github.com/SickGear/SickGear.git
synced 2024-12-04 18:33:38 +00:00
1724 lines
60 KiB
Python
1724 lines
60 KiB
Python
|
import boto
|
||
|
from boto.dynamodb2 import exceptions
|
||
|
from boto.dynamodb2.fields import (HashKey, RangeKey,
|
||
|
AllIndex, KeysOnlyIndex, IncludeIndex,
|
||
|
GlobalAllIndex, GlobalKeysOnlyIndex,
|
||
|
GlobalIncludeIndex)
|
||
|
from boto.dynamodb2.items import Item
|
||
|
from boto.dynamodb2.layer1 import DynamoDBConnection
|
||
|
from boto.dynamodb2.results import ResultSet, BatchGetResultSet
|
||
|
from boto.dynamodb2.types import (NonBooleanDynamizer, Dynamizer, FILTER_OPERATORS,
|
||
|
QUERY_OPERATORS, STRING)
|
||
|
from boto.exception import JSONResponseError
|
||
|
|
||
|
|
||
|
class Table(object):
|
||
|
"""
|
||
|
Interacts & models the behavior of a DynamoDB table.
|
||
|
|
||
|
The ``Table`` object represents a set (or rough categorization) of
|
||
|
records within DynamoDB. The important part is that all records within the
|
||
|
table, while largely-schema-free, share the same schema & are essentially
|
||
|
namespaced for use in your application. For example, you might have a
|
||
|
``users`` table or a ``forums`` table.
|
||
|
"""
|
||
|
max_batch_get = 100
|
||
|
|
||
|
_PROJECTION_TYPE_TO_INDEX = dict(
|
||
|
global_indexes=dict(
|
||
|
ALL=GlobalAllIndex,
|
||
|
KEYS_ONLY=GlobalKeysOnlyIndex,
|
||
|
INCLUDE=GlobalIncludeIndex,
|
||
|
), local_indexes=dict(
|
||
|
ALL=AllIndex,
|
||
|
KEYS_ONLY=KeysOnlyIndex,
|
||
|
INCLUDE=IncludeIndex,
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def __init__(self, table_name, schema=None, throughput=None, indexes=None,
|
||
|
global_indexes=None, connection=None):
|
||
|
"""
|
||
|
Sets up a new in-memory ``Table``.
|
||
|
|
||
|
This is useful if the table already exists within DynamoDB & you simply
|
||
|
want to use it for additional interactions. The only required parameter
|
||
|
is the ``table_name``. However, under the hood, the object will call
|
||
|
``describe_table`` to determine the schema/indexes/throughput. You
|
||
|
can avoid this extra call by passing in ``schema`` & ``indexes``.
|
||
|
|
||
|
**IMPORTANT** - If you're creating a new ``Table`` for the first time,
|
||
|
you should use the ``Table.create`` method instead, as it will
|
||
|
persist the table structure to DynamoDB.
|
||
|
|
||
|
Requires a ``table_name`` parameter, which should be a simple string
|
||
|
of the name of the table.
|
||
|
|
||
|
Optionally accepts a ``schema`` parameter, which should be a list of
|
||
|
``BaseSchemaField`` subclasses representing the desired schema.
|
||
|
|
||
|
Optionally accepts a ``throughput`` parameter, which should be a
|
||
|
dictionary. If provided, it should specify a ``read`` & ``write`` key,
|
||
|
both of which should have an integer value associated with them.
|
||
|
|
||
|
Optionally accepts a ``indexes`` parameter, which should be a list of
|
||
|
``BaseIndexField`` subclasses representing the desired indexes.
|
||
|
|
||
|
Optionally accepts a ``global_indexes`` parameter, which should be a
|
||
|
list of ``GlobalBaseIndexField`` subclasses representing the desired
|
||
|
indexes.
|
||
|
|
||
|
Optionally accepts a ``connection`` parameter, which should be a
|
||
|
``DynamoDBConnection`` instance (or subclass). This is primarily useful
|
||
|
for specifying alternate connection parameters.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# The simple, it-already-exists case.
|
||
|
>>> conn = Table('users')
|
||
|
|
||
|
# The full, minimum-extra-calls case.
|
||
|
>>> from boto import dynamodb2
|
||
|
>>> users = Table('users', schema=[
|
||
|
... HashKey('username'),
|
||
|
... RangeKey('date_joined', data_type=NUMBER)
|
||
|
... ], throughput={
|
||
|
... 'read':20,
|
||
|
... 'write': 10,
|
||
|
... }, indexes=[
|
||
|
... KeysOnlyIndex('MostRecentlyJoined', parts=[
|
||
|
... HashKey('username')
|
||
|
... RangeKey('date_joined')
|
||
|
... ]),
|
||
|
... ], global_indexes=[
|
||
|
... GlobalAllIndex('UsersByZipcode', parts=[
|
||
|
... HashKey('zipcode'),
|
||
|
... RangeKey('username'),
|
||
|
... ],
|
||
|
... throughput={
|
||
|
... 'read':10,
|
||
|
... 'write':10,
|
||
|
... }),
|
||
|
... ], connection=dynamodb2.connect_to_region('us-west-2',
|
||
|
... aws_access_key_id='key',
|
||
|
... aws_secret_access_key='key',
|
||
|
... ))
|
||
|
|
||
|
"""
|
||
|
self.table_name = table_name
|
||
|
self.connection = connection
|
||
|
self.throughput = {
|
||
|
'read': 5,
|
||
|
'write': 5,
|
||
|
}
|
||
|
self.schema = schema
|
||
|
self.indexes = indexes
|
||
|
self.global_indexes = global_indexes
|
||
|
|
||
|
if self.connection is None:
|
||
|
self.connection = DynamoDBConnection()
|
||
|
|
||
|
if throughput is not None:
|
||
|
self.throughput = throughput
|
||
|
|
||
|
self._dynamizer = NonBooleanDynamizer()
|
||
|
|
||
|
def use_boolean(self):
|
||
|
self._dynamizer = Dynamizer()
|
||
|
|
||
|
@classmethod
|
||
|
def create(cls, table_name, schema, throughput=None, indexes=None,
|
||
|
global_indexes=None, connection=None):
|
||
|
"""
|
||
|
Creates a new table in DynamoDB & returns an in-memory ``Table`` object.
|
||
|
|
||
|
This will setup a brand new table within DynamoDB. The ``table_name``
|
||
|
must be unique for your AWS account. The ``schema`` is also required
|
||
|
to define the key structure of the table.
|
||
|
|
||
|
**IMPORTANT** - You should consider the usage pattern of your table
|
||
|
up-front, as the schema can **NOT** be modified once the table is
|
||
|
created, requiring the creation of a new table & migrating the data
|
||
|
should you wish to revise it.
|
||
|
|
||
|
**IMPORTANT** - If the table already exists in DynamoDB, additional
|
||
|
calls to this method will result in an error. If you just need
|
||
|
a ``Table`` object to interact with the existing table, you should
|
||
|
just initialize a new ``Table`` object, which requires only the
|
||
|
``table_name``.
|
||
|
|
||
|
Requires a ``table_name`` parameter, which should be a simple string
|
||
|
of the name of the table.
|
||
|
|
||
|
Requires a ``schema`` parameter, which should be a list of
|
||
|
``BaseSchemaField`` subclasses representing the desired schema.
|
||
|
|
||
|
Optionally accepts a ``throughput`` parameter, which should be a
|
||
|
dictionary. If provided, it should specify a ``read`` & ``write`` key,
|
||
|
both of which should have an integer value associated with them.
|
||
|
|
||
|
Optionally accepts a ``indexes`` parameter, which should be a list of
|
||
|
``BaseIndexField`` subclasses representing the desired indexes.
|
||
|
|
||
|
Optionally accepts a ``global_indexes`` parameter, which should be a
|
||
|
list of ``GlobalBaseIndexField`` subclasses representing the desired
|
||
|
indexes.
|
||
|
|
||
|
Optionally accepts a ``connection`` parameter, which should be a
|
||
|
``DynamoDBConnection`` instance (or subclass). This is primarily useful
|
||
|
for specifying alternate connection parameters.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> users = Table.create('users', schema=[
|
||
|
... HashKey('username'),
|
||
|
... RangeKey('date_joined', data_type=NUMBER)
|
||
|
... ], throughput={
|
||
|
... 'read':20,
|
||
|
... 'write': 10,
|
||
|
... }, indexes=[
|
||
|
... KeysOnlyIndex('MostRecentlyJoined', parts=[
|
||
|
... HashKey('username'),
|
||
|
... RangeKey('date_joined'),
|
||
|
... ]), global_indexes=[
|
||
|
... GlobalAllIndex('UsersByZipcode', parts=[
|
||
|
... HashKey('zipcode'),
|
||
|
... RangeKey('username'),
|
||
|
... ],
|
||
|
... throughput={
|
||
|
... 'read':10,
|
||
|
... 'write':10,
|
||
|
... }),
|
||
|
... ])
|
||
|
|
||
|
"""
|
||
|
table = cls(table_name=table_name, connection=connection)
|
||
|
table.schema = schema
|
||
|
|
||
|
if throughput is not None:
|
||
|
table.throughput = throughput
|
||
|
|
||
|
if indexes is not None:
|
||
|
table.indexes = indexes
|
||
|
|
||
|
if global_indexes is not None:
|
||
|
table.global_indexes = global_indexes
|
||
|
|
||
|
# Prep the schema.
|
||
|
raw_schema = []
|
||
|
attr_defs = []
|
||
|
seen_attrs = set()
|
||
|
|
||
|
for field in table.schema:
|
||
|
raw_schema.append(field.schema())
|
||
|
# Build the attributes off what we know.
|
||
|
seen_attrs.add(field.name)
|
||
|
attr_defs.append(field.definition())
|
||
|
|
||
|
raw_throughput = {
|
||
|
'ReadCapacityUnits': int(table.throughput['read']),
|
||
|
'WriteCapacityUnits': int(table.throughput['write']),
|
||
|
}
|
||
|
kwargs = {}
|
||
|
|
||
|
kwarg_map = {
|
||
|
'indexes': 'local_secondary_indexes',
|
||
|
'global_indexes': 'global_secondary_indexes',
|
||
|
}
|
||
|
for index_attr in ('indexes', 'global_indexes'):
|
||
|
table_indexes = getattr(table, index_attr)
|
||
|
if table_indexes:
|
||
|
raw_indexes = []
|
||
|
for index_field in table_indexes:
|
||
|
raw_indexes.append(index_field.schema())
|
||
|
# Make sure all attributes specified in the indexes are
|
||
|
# added to the definition
|
||
|
for field in index_field.parts:
|
||
|
if field.name not in seen_attrs:
|
||
|
seen_attrs.add(field.name)
|
||
|
attr_defs.append(field.definition())
|
||
|
|
||
|
kwargs[kwarg_map[index_attr]] = raw_indexes
|
||
|
|
||
|
table.connection.create_table(
|
||
|
table_name=table.table_name,
|
||
|
attribute_definitions=attr_defs,
|
||
|
key_schema=raw_schema,
|
||
|
provisioned_throughput=raw_throughput,
|
||
|
**kwargs
|
||
|
)
|
||
|
return table
|
||
|
|
||
|
def _introspect_schema(self, raw_schema, raw_attributes=None):
|
||
|
"""
|
||
|
Given a raw schema structure back from a DynamoDB response, parse
|
||
|
out & build the high-level Python objects that represent them.
|
||
|
"""
|
||
|
schema = []
|
||
|
sane_attributes = {}
|
||
|
|
||
|
if raw_attributes:
|
||
|
for field in raw_attributes:
|
||
|
sane_attributes[field['AttributeName']] = field['AttributeType']
|
||
|
|
||
|
for field in raw_schema:
|
||
|
data_type = sane_attributes.get(field['AttributeName'], STRING)
|
||
|
|
||
|
if field['KeyType'] == 'HASH':
|
||
|
schema.append(
|
||
|
HashKey(field['AttributeName'], data_type=data_type)
|
||
|
)
|
||
|
elif field['KeyType'] == 'RANGE':
|
||
|
schema.append(
|
||
|
RangeKey(field['AttributeName'], data_type=data_type)
|
||
|
)
|
||
|
else:
|
||
|
raise exceptions.UnknownSchemaFieldError(
|
||
|
"%s was seen, but is unknown. Please report this at "
|
||
|
"https://github.com/boto/boto/issues." % field['KeyType']
|
||
|
)
|
||
|
|
||
|
return schema
|
||
|
|
||
|
def _introspect_all_indexes(self, raw_indexes, map_indexes_projection):
|
||
|
"""
|
||
|
Given a raw index/global index structure back from a DynamoDB response,
|
||
|
parse out & build the high-level Python objects that represent them.
|
||
|
"""
|
||
|
indexes = []
|
||
|
|
||
|
for field in raw_indexes:
|
||
|
index_klass = map_indexes_projection.get('ALL')
|
||
|
kwargs = {
|
||
|
'parts': []
|
||
|
}
|
||
|
|
||
|
if field['Projection']['ProjectionType'] == 'ALL':
|
||
|
index_klass = map_indexes_projection.get('ALL')
|
||
|
elif field['Projection']['ProjectionType'] == 'KEYS_ONLY':
|
||
|
index_klass = map_indexes_projection.get('KEYS_ONLY')
|
||
|
elif field['Projection']['ProjectionType'] == 'INCLUDE':
|
||
|
index_klass = map_indexes_projection.get('INCLUDE')
|
||
|
kwargs['includes'] = field['Projection']['NonKeyAttributes']
|
||
|
else:
|
||
|
raise exceptions.UnknownIndexFieldError(
|
||
|
"%s was seen, but is unknown. Please report this at "
|
||
|
"https://github.com/boto/boto/issues." % \
|
||
|
field['Projection']['ProjectionType']
|
||
|
)
|
||
|
|
||
|
name = field['IndexName']
|
||
|
kwargs['parts'] = self._introspect_schema(field['KeySchema'], None)
|
||
|
indexes.append(index_klass(name, **kwargs))
|
||
|
|
||
|
return indexes
|
||
|
|
||
|
def _introspect_indexes(self, raw_indexes):
|
||
|
"""
|
||
|
Given a raw index structure back from a DynamoDB response, parse
|
||
|
out & build the high-level Python objects that represent them.
|
||
|
"""
|
||
|
return self._introspect_all_indexes(
|
||
|
raw_indexes, self._PROJECTION_TYPE_TO_INDEX.get('local_indexes'))
|
||
|
|
||
|
def _introspect_global_indexes(self, raw_global_indexes):
|
||
|
"""
|
||
|
Given a raw global index structure back from a DynamoDB response, parse
|
||
|
out & build the high-level Python objects that represent them.
|
||
|
"""
|
||
|
return self._introspect_all_indexes(
|
||
|
raw_global_indexes,
|
||
|
self._PROJECTION_TYPE_TO_INDEX.get('global_indexes'))
|
||
|
|
||
|
def describe(self):
|
||
|
"""
|
||
|
Describes the current structure of the table in DynamoDB.
|
||
|
|
||
|
This information will be used to update the ``schema``, ``indexes``,
|
||
|
``global_indexes`` and ``throughput`` information on the ``Table``. Some
|
||
|
calls, such as those involving creating keys or querying, will require
|
||
|
this information to be populated.
|
||
|
|
||
|
It also returns the full raw data structure from DynamoDB, in the
|
||
|
event you'd like to parse out additional information (such as the
|
||
|
``ItemCount`` or usage information).
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> users.describe()
|
||
|
{
|
||
|
# Lots of keys here...
|
||
|
}
|
||
|
>>> len(users.schema)
|
||
|
2
|
||
|
|
||
|
"""
|
||
|
result = self.connection.describe_table(self.table_name)
|
||
|
|
||
|
# Blindly update throughput, since what's on DynamoDB's end is likely
|
||
|
# more correct.
|
||
|
raw_throughput = result['Table']['ProvisionedThroughput']
|
||
|
self.throughput['read'] = int(raw_throughput['ReadCapacityUnits'])
|
||
|
self.throughput['write'] = int(raw_throughput['WriteCapacityUnits'])
|
||
|
|
||
|
if not self.schema:
|
||
|
# Since we have the data, build the schema.
|
||
|
raw_schema = result['Table'].get('KeySchema', [])
|
||
|
raw_attributes = result['Table'].get('AttributeDefinitions', [])
|
||
|
self.schema = self._introspect_schema(raw_schema, raw_attributes)
|
||
|
|
||
|
if not self.indexes:
|
||
|
# Build the index information as well.
|
||
|
raw_indexes = result['Table'].get('LocalSecondaryIndexes', [])
|
||
|
self.indexes = self._introspect_indexes(raw_indexes)
|
||
|
|
||
|
# Build the global index information as well.
|
||
|
raw_global_indexes = result['Table'].get('GlobalSecondaryIndexes', [])
|
||
|
self.global_indexes = self._introspect_global_indexes(raw_global_indexes)
|
||
|
|
||
|
# This is leaky.
|
||
|
return result
|
||
|
|
||
|
def update(self, throughput=None, global_indexes=None):
|
||
|
"""
|
||
|
Updates table attributes and global indexes in DynamoDB.
|
||
|
|
||
|
Optionally accepts a ``throughput`` parameter, which should be a
|
||
|
dictionary. If provided, it should specify a ``read`` & ``write`` key,
|
||
|
both of which should have an integer value associated with them.
|
||
|
|
||
|
Optionally accepts a ``global_indexes`` parameter, which should be a
|
||
|
dictionary. If provided, it should specify the index name, which is also
|
||
|
a dict containing a ``read`` & ``write`` key, both of which
|
||
|
should have an integer value associated with them. If you are writing
|
||
|
new code, please use ``Table.update_global_secondary_index``.
|
||
|
|
||
|
Returns ``True`` on success.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# For a read-heavier application...
|
||
|
>>> users.update(throughput={
|
||
|
... 'read': 20,
|
||
|
... 'write': 10,
|
||
|
... })
|
||
|
True
|
||
|
|
||
|
# To also update the global index(es) throughput.
|
||
|
>>> users.update(throughput={
|
||
|
... 'read': 20,
|
||
|
... 'write': 10,
|
||
|
... },
|
||
|
... global_secondary_indexes={
|
||
|
... 'TheIndexNameHere': {
|
||
|
... 'read': 15,
|
||
|
... 'write': 5,
|
||
|
... }
|
||
|
... })
|
||
|
True
|
||
|
"""
|
||
|
|
||
|
data = None
|
||
|
|
||
|
if throughput:
|
||
|
self.throughput = throughput
|
||
|
data = {
|
||
|
'ReadCapacityUnits': int(self.throughput['read']),
|
||
|
'WriteCapacityUnits': int(self.throughput['write']),
|
||
|
}
|
||
|
|
||
|
gsi_data = None
|
||
|
|
||
|
if global_indexes:
|
||
|
gsi_data = []
|
||
|
|
||
|
for gsi_name, gsi_throughput in global_indexes.items():
|
||
|
gsi_data.append({
|
||
|
"Update": {
|
||
|
"IndexName": gsi_name,
|
||
|
"ProvisionedThroughput": {
|
||
|
"ReadCapacityUnits": int(gsi_throughput['read']),
|
||
|
"WriteCapacityUnits": int(gsi_throughput['write']),
|
||
|
},
|
||
|
},
|
||
|
})
|
||
|
|
||
|
if throughput or global_indexes:
|
||
|
self.connection.update_table(
|
||
|
self.table_name,
|
||
|
provisioned_throughput=data,
|
||
|
global_secondary_index_updates=gsi_data,
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
else:
|
||
|
msg = 'You need to provide either the throughput or the ' \
|
||
|
'global_indexes to update method'
|
||
|
boto.log.error(msg)
|
||
|
|
||
|
return False
|
||
|
|
||
|
def create_global_secondary_index(self, global_index):
|
||
|
"""
|
||
|
Creates a global index in DynamoDB after the table has been created.
|
||
|
|
||
|
Requires a ``global_indexes`` parameter, which should be a
|
||
|
``GlobalBaseIndexField`` subclass representing the desired index.
|
||
|
|
||
|
To update ``global_indexes`` information on the ``Table``, you'll need
|
||
|
to call ``Table.describe``.
|
||
|
|
||
|
Returns ``True`` on success.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# To create a global index
|
||
|
>>> users.create_global_secondary_index(
|
||
|
... global_index=GlobalAllIndex(
|
||
|
... 'TheIndexNameHere', parts=[
|
||
|
... HashKey('requiredHashkey', data_type=STRING),
|
||
|
... RangeKey('optionalRangeKey', data_type=STRING)
|
||
|
... ],
|
||
|
... throughput={
|
||
|
... 'read': 2,
|
||
|
... 'write': 1,
|
||
|
... })
|
||
|
... )
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
if global_index:
|
||
|
gsi_data = []
|
||
|
gsi_data_attr_def = []
|
||
|
|
||
|
gsi_data.append({
|
||
|
"Create": global_index.schema()
|
||
|
})
|
||
|
|
||
|
for attr_def in global_index.parts:
|
||
|
gsi_data_attr_def.append(attr_def.definition())
|
||
|
|
||
|
self.connection.update_table(
|
||
|
self.table_name,
|
||
|
global_secondary_index_updates=gsi_data,
|
||
|
attribute_definitions=gsi_data_attr_def
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
else:
|
||
|
msg = 'You need to provide the global_index to ' \
|
||
|
'create_global_secondary_index method'
|
||
|
boto.log.error(msg)
|
||
|
|
||
|
return False
|
||
|
|
||
|
def delete_global_secondary_index(self, global_index_name):
|
||
|
"""
|
||
|
Deletes a global index in DynamoDB after the table has been created.
|
||
|
|
||
|
Requires a ``global_index_name`` parameter, which should be a simple
|
||
|
string of the name of the global secondary index.
|
||
|
|
||
|
To update ``global_indexes`` information on the ``Table``, you'll need
|
||
|
to call ``Table.describe``.
|
||
|
|
||
|
Returns ``True`` on success.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# To delete a global index
|
||
|
>>> users.delete_global_secondary_index('TheIndexNameHere')
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
if global_index_name:
|
||
|
gsi_data = [
|
||
|
{
|
||
|
"Delete": {
|
||
|
"IndexName": global_index_name
|
||
|
}
|
||
|
}
|
||
|
]
|
||
|
|
||
|
self.connection.update_table(
|
||
|
self.table_name,
|
||
|
global_secondary_index_updates=gsi_data,
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
else:
|
||
|
msg = 'You need to provide the global index name to ' \
|
||
|
'delete_global_secondary_index method'
|
||
|
boto.log.error(msg)
|
||
|
|
||
|
return False
|
||
|
|
||
|
def update_global_secondary_index(self, global_indexes):
|
||
|
"""
|
||
|
Updates a global index(es) in DynamoDB after the table has been created.
|
||
|
|
||
|
Requires a ``global_indexes`` parameter, which should be a
|
||
|
dictionary. If provided, it should specify the index name, which is also
|
||
|
a dict containing a ``read`` & ``write`` key, both of which
|
||
|
should have an integer value associated with them.
|
||
|
|
||
|
To update ``global_indexes`` information on the ``Table``, you'll need
|
||
|
to call ``Table.describe``.
|
||
|
|
||
|
Returns ``True`` on success.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# To update a global index
|
||
|
>>> users.update_global_secondary_index(global_indexes={
|
||
|
... 'TheIndexNameHere': {
|
||
|
... 'read': 15,
|
||
|
... 'write': 5,
|
||
|
... }
|
||
|
... })
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
if global_indexes:
|
||
|
gsi_data = []
|
||
|
|
||
|
for gsi_name, gsi_throughput in global_indexes.items():
|
||
|
gsi_data.append({
|
||
|
"Update": {
|
||
|
"IndexName": gsi_name,
|
||
|
"ProvisionedThroughput": {
|
||
|
"ReadCapacityUnits": int(gsi_throughput['read']),
|
||
|
"WriteCapacityUnits": int(gsi_throughput['write']),
|
||
|
},
|
||
|
},
|
||
|
})
|
||
|
|
||
|
self.connection.update_table(
|
||
|
self.table_name,
|
||
|
global_secondary_index_updates=gsi_data,
|
||
|
)
|
||
|
return True
|
||
|
else:
|
||
|
msg = 'You need to provide the global indexes to ' \
|
||
|
'update_global_secondary_index method'
|
||
|
boto.log.error(msg)
|
||
|
|
||
|
return False
|
||
|
|
||
|
def delete(self):
|
||
|
"""
|
||
|
Deletes a table in DynamoDB.
|
||
|
|
||
|
**IMPORTANT** - Be careful when using this method, there is no undo.
|
||
|
|
||
|
Returns ``True`` on success.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> users.delete()
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
self.connection.delete_table(self.table_name)
|
||
|
return True
|
||
|
|
||
|
def _encode_keys(self, keys):
|
||
|
"""
|
||
|
Given a flat Python dictionary of keys/values, converts it into the
|
||
|
nested dictionary DynamoDB expects.
|
||
|
|
||
|
Converts::
|
||
|
|
||
|
{
|
||
|
'username': 'john',
|
||
|
'tags': [1, 2, 5],
|
||
|
}
|
||
|
|
||
|
...to...::
|
||
|
|
||
|
{
|
||
|
'username': {'S': 'john'},
|
||
|
'tags': {'NS': ['1', '2', '5']},
|
||
|
}
|
||
|
|
||
|
"""
|
||
|
raw_key = {}
|
||
|
|
||
|
for key, value in keys.items():
|
||
|
raw_key[key] = self._dynamizer.encode(value)
|
||
|
|
||
|
return raw_key
|
||
|
|
||
|
def get_item(self, consistent=False, attributes=None, **kwargs):
|
||
|
"""
|
||
|
Fetches an item (record) from a table in DynamoDB.
|
||
|
|
||
|
To specify the key of the item you'd like to get, you can specify the
|
||
|
key attributes as kwargs.
|
||
|
|
||
|
Optionally accepts a ``consistent`` parameter, which should be a
|
||
|
boolean. If you provide ``True``, it will perform
|
||
|
a consistent (but more expensive) read from DynamoDB.
|
||
|
(Default: ``False``)
|
||
|
|
||
|
Optionally accepts an ``attributes`` parameter, which should be a
|
||
|
list of fieldname to fetch. (Default: ``None``, which means all fields
|
||
|
should be fetched)
|
||
|
|
||
|
Returns an ``Item`` instance containing all the data for that record.
|
||
|
|
||
|
Raises an ``ItemNotFound`` exception if the item is not found.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# A simple hash key.
|
||
|
>>> john = users.get_item(username='johndoe')
|
||
|
>>> john['first_name']
|
||
|
'John'
|
||
|
|
||
|
# A complex hash+range key.
|
||
|
>>> john = users.get_item(username='johndoe', last_name='Doe')
|
||
|
>>> john['first_name']
|
||
|
'John'
|
||
|
|
||
|
# A consistent read (assuming the data might have just changed).
|
||
|
>>> john = users.get_item(username='johndoe', consistent=True)
|
||
|
>>> john['first_name']
|
||
|
'Johann'
|
||
|
|
||
|
# With a key that is an invalid variable name in Python.
|
||
|
# Also, assumes a different schema than previous examples.
|
||
|
>>> john = users.get_item(**{
|
||
|
... 'date-joined': 127549192,
|
||
|
... })
|
||
|
>>> john['first_name']
|
||
|
'John'
|
||
|
|
||
|
"""
|
||
|
raw_key = self._encode_keys(kwargs)
|
||
|
item_data = self.connection.get_item(
|
||
|
self.table_name,
|
||
|
raw_key,
|
||
|
attributes_to_get=attributes,
|
||
|
consistent_read=consistent
|
||
|
)
|
||
|
if 'Item' not in item_data:
|
||
|
raise exceptions.ItemNotFound("Item %s couldn't be found." % kwargs)
|
||
|
item = Item(self)
|
||
|
item.load(item_data)
|
||
|
return item
|
||
|
|
||
|
def has_item(self, **kwargs):
|
||
|
"""
|
||
|
Return whether an item (record) exists within a table in DynamoDB.
|
||
|
|
||
|
To specify the key of the item you'd like to get, you can specify the
|
||
|
key attributes as kwargs.
|
||
|
|
||
|
Optionally accepts a ``consistent`` parameter, which should be a
|
||
|
boolean. If you provide ``True``, it will perform
|
||
|
a consistent (but more expensive) read from DynamoDB.
|
||
|
(Default: ``False``)
|
||
|
|
||
|
Optionally accepts an ``attributes`` parameter, which should be a
|
||
|
list of fieldnames to fetch. (Default: ``None``, which means all fields
|
||
|
should be fetched)
|
||
|
|
||
|
Returns ``True`` if an ``Item`` is present, ``False`` if not.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# Simple, just hash-key schema.
|
||
|
>>> users.has_item(username='johndoe')
|
||
|
True
|
||
|
|
||
|
# Complex schema, item not present.
|
||
|
>>> users.has_item(
|
||
|
... username='johndoe',
|
||
|
... date_joined='2014-01-07'
|
||
|
... )
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
try:
|
||
|
self.get_item(**kwargs)
|
||
|
except (JSONResponseError, exceptions.ItemNotFound):
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
def lookup(self, *args, **kwargs):
|
||
|
"""
|
||
|
Look up an entry in DynamoDB. This is mostly backwards compatible
|
||
|
with boto.dynamodb. Unlike get_item, it takes hash_key and range_key first,
|
||
|
although you may still specify keyword arguments instead.
|
||
|
|
||
|
Also unlike the get_item command, if the returned item has no keys
|
||
|
(i.e., it does not exist in DynamoDB), a None result is returned, instead
|
||
|
of an empty key object.
|
||
|
|
||
|
Example::
|
||
|
>>> user = users.lookup(username)
|
||
|
>>> user = users.lookup(username, consistent=True)
|
||
|
>>> app = apps.lookup('my_customer_id', 'my_app_id')
|
||
|
|
||
|
"""
|
||
|
if not self.schema:
|
||
|
self.describe()
|
||
|
for x, arg in enumerate(args):
|
||
|
kwargs[self.schema[x].name] = arg
|
||
|
ret = self.get_item(**kwargs)
|
||
|
if not ret.keys():
|
||
|
return None
|
||
|
return ret
|
||
|
|
||
|
def new_item(self, *args):
|
||
|
"""
|
||
|
Returns a new, blank item
|
||
|
|
||
|
This is mostly for consistency with boto.dynamodb
|
||
|
"""
|
||
|
if not self.schema:
|
||
|
self.describe()
|
||
|
data = {}
|
||
|
for x, arg in enumerate(args):
|
||
|
data[self.schema[x].name] = arg
|
||
|
return Item(self, data=data)
|
||
|
|
||
|
def put_item(self, data, overwrite=False):
|
||
|
"""
|
||
|
Saves an entire item to DynamoDB.
|
||
|
|
||
|
By default, if any part of the ``Item``'s original data doesn't match
|
||
|
what's currently in DynamoDB, this request will fail. This prevents
|
||
|
other processes from updating the data in between when you read the
|
||
|
item & when your request to update the item's data is processed, which
|
||
|
would typically result in some data loss.
|
||
|
|
||
|
Requires a ``data`` parameter, which should be a dictionary of the data
|
||
|
you'd like to store in DynamoDB.
|
||
|
|
||
|
Optionally accepts an ``overwrite`` parameter, which should be a
|
||
|
boolean. If you provide ``True``, this will tell DynamoDB to blindly
|
||
|
overwrite whatever data is present, if any.
|
||
|
|
||
|
Returns ``True`` on success.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> users.put_item(data={
|
||
|
... 'username': 'jane',
|
||
|
... 'first_name': 'Jane',
|
||
|
... 'last_name': 'Doe',
|
||
|
... 'date_joined': 126478915,
|
||
|
... })
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
item = Item(self, data=data)
|
||
|
return item.save(overwrite=overwrite)
|
||
|
|
||
|
def _put_item(self, item_data, expects=None):
|
||
|
"""
|
||
|
The internal variant of ``put_item`` (full data). This is used by the
|
||
|
``Item`` objects, since that operation is represented at the
|
||
|
table-level by the API, but conceptually maps better to telling an
|
||
|
individual ``Item`` to save itself.
|
||
|
"""
|
||
|
kwargs = {}
|
||
|
|
||
|
if expects is not None:
|
||
|
kwargs['expected'] = expects
|
||
|
|
||
|
self.connection.put_item(self.table_name, item_data, **kwargs)
|
||
|
return True
|
||
|
|
||
|
def _update_item(self, key, item_data, expects=None):
|
||
|
"""
|
||
|
The internal variant of ``put_item`` (partial data). This is used by the
|
||
|
``Item`` objects, since that operation is represented at the
|
||
|
table-level by the API, but conceptually maps better to telling an
|
||
|
individual ``Item`` to save itself.
|
||
|
"""
|
||
|
raw_key = self._encode_keys(key)
|
||
|
kwargs = {}
|
||
|
|
||
|
if expects is not None:
|
||
|
kwargs['expected'] = expects
|
||
|
|
||
|
self.connection.update_item(self.table_name, raw_key, item_data, **kwargs)
|
||
|
return True
|
||
|
|
||
|
def delete_item(self, expected=None, conditional_operator=None, **kwargs):
|
||
|
"""
|
||
|
Deletes a single item. You can perform a conditional delete operation
|
||
|
that deletes the item if it exists, or if it has an expected attribute
|
||
|
value.
|
||
|
|
||
|
Conditional deletes are useful for only deleting items if specific
|
||
|
conditions are met. If those conditions are met, DynamoDB performs
|
||
|
the delete. Otherwise, the item is not deleted.
|
||
|
|
||
|
To specify the expected attribute values of the item, you can pass a
|
||
|
dictionary of conditions to ``expected``. Each condition should follow
|
||
|
the pattern ``<attributename>__<comparison_operator>=<value_to_expect>``.
|
||
|
|
||
|
**IMPORTANT** - Be careful when using this method, there is no undo.
|
||
|
|
||
|
To specify the key of the item you'd like to get, you can specify the
|
||
|
key attributes as kwargs.
|
||
|
|
||
|
Optionally accepts an ``expected`` parameter which is a dictionary of
|
||
|
expected attribute value conditions.
|
||
|
|
||
|
Optionally accepts a ``conditional_operator`` which applies to the
|
||
|
expected attribute value conditions:
|
||
|
|
||
|
+ `AND` - If all of the conditions evaluate to true (default)
|
||
|
+ `OR` - True if at least one condition evaluates to true
|
||
|
|
||
|
Returns ``True`` on success, ``False`` on failed conditional delete.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# A simple hash key.
|
||
|
>>> users.delete_item(username='johndoe')
|
||
|
True
|
||
|
|
||
|
# A complex hash+range key.
|
||
|
>>> users.delete_item(username='jane', last_name='Doe')
|
||
|
True
|
||
|
|
||
|
# With a key that is an invalid variable name in Python.
|
||
|
# Also, assumes a different schema than previous examples.
|
||
|
>>> users.delete_item(**{
|
||
|
... 'date-joined': 127549192,
|
||
|
... })
|
||
|
True
|
||
|
|
||
|
# Conditional delete
|
||
|
>>> users.delete_item(username='johndoe',
|
||
|
... expected={'balance__eq': 0})
|
||
|
True
|
||
|
"""
|
||
|
expected = self._build_filters(expected, using=FILTER_OPERATORS)
|
||
|
raw_key = self._encode_keys(kwargs)
|
||
|
|
||
|
try:
|
||
|
self.connection.delete_item(self.table_name, raw_key,
|
||
|
expected=expected,
|
||
|
conditional_operator=conditional_operator)
|
||
|
except exceptions.ConditionalCheckFailedException:
|
||
|
return False
|
||
|
|
||
|
return True
|
||
|
|
||
|
def get_key_fields(self):
|
||
|
"""
|
||
|
Returns the fields necessary to make a key for a table.
|
||
|
|
||
|
If the ``Table`` does not already have a populated ``schema``,
|
||
|
this will request it via a ``Table.describe`` call.
|
||
|
|
||
|
Returns a list of fieldnames (strings).
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# A simple hash key.
|
||
|
>>> users.get_key_fields()
|
||
|
['username']
|
||
|
|
||
|
# A complex hash+range key.
|
||
|
>>> users.get_key_fields()
|
||
|
['username', 'last_name']
|
||
|
|
||
|
"""
|
||
|
if not self.schema:
|
||
|
# We don't know the structure of the table. Get a description to
|
||
|
# populate the schema.
|
||
|
self.describe()
|
||
|
|
||
|
return [field.name for field in self.schema]
|
||
|
|
||
|
def batch_write(self):
|
||
|
"""
|
||
|
Allows the batching of writes to DynamoDB.
|
||
|
|
||
|
Since each write/delete call to DynamoDB has a cost associated with it,
|
||
|
when loading lots of data, it makes sense to batch them, creating as
|
||
|
few calls as possible.
|
||
|
|
||
|
This returns a context manager that will transparently handle creating
|
||
|
these batches. The object you get back lightly-resembles a ``Table``
|
||
|
object, sharing just the ``put_item`` & ``delete_item`` methods
|
||
|
(which are all that DynamoDB can batch in terms of writing data).
|
||
|
|
||
|
DynamoDB's maximum batch size is 25 items per request. If you attempt
|
||
|
to put/delete more than that, the context manager will batch as many
|
||
|
as it can up to that number, then flush them to DynamoDB & continue
|
||
|
batching as more calls come in.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# Assuming a table with one record...
|
||
|
>>> with users.batch_write() as batch:
|
||
|
... batch.put_item(data={
|
||
|
... 'username': 'johndoe',
|
||
|
... 'first_name': 'John',
|
||
|
... 'last_name': 'Doe',
|
||
|
... 'owner': 1,
|
||
|
... })
|
||
|
... # Nothing across the wire yet.
|
||
|
... batch.delete_item(username='bob')
|
||
|
... # Still no requests sent.
|
||
|
... batch.put_item(data={
|
||
|
... 'username': 'jane',
|
||
|
... 'first_name': 'Jane',
|
||
|
... 'last_name': 'Doe',
|
||
|
... 'date_joined': 127436192,
|
||
|
... })
|
||
|
... # Nothing yet, but once we leave the context, the
|
||
|
... # put/deletes will be sent.
|
||
|
|
||
|
"""
|
||
|
# PHENOMENAL COSMIC DOCS!!! itty-bitty code.
|
||
|
return BatchTable(self)
|
||
|
|
||
|
def _build_filters(self, filter_kwargs, using=QUERY_OPERATORS):
|
||
|
"""
|
||
|
An internal method for taking query/scan-style ``**kwargs`` & turning
|
||
|
them into the raw structure DynamoDB expects for filtering.
|
||
|
"""
|
||
|
if filter_kwargs is None:
|
||
|
return
|
||
|
|
||
|
filters = {}
|
||
|
|
||
|
for field_and_op, value in filter_kwargs.items():
|
||
|
field_bits = field_and_op.split('__')
|
||
|
fieldname = '__'.join(field_bits[:-1])
|
||
|
|
||
|
try:
|
||
|
op = using[field_bits[-1]]
|
||
|
except KeyError:
|
||
|
raise exceptions.UnknownFilterTypeError(
|
||
|
"Operator '%s' from '%s' is not recognized." % (
|
||
|
field_bits[-1],
|
||
|
field_and_op
|
||
|
)
|
||
|
)
|
||
|
|
||
|
lookup = {
|
||
|
'AttributeValueList': [],
|
||
|
'ComparisonOperator': op,
|
||
|
}
|
||
|
|
||
|
# Special-case the ``NULL/NOT_NULL`` case.
|
||
|
if field_bits[-1] == 'null':
|
||
|
del lookup['AttributeValueList']
|
||
|
|
||
|
if value is False:
|
||
|
lookup['ComparisonOperator'] = 'NOT_NULL'
|
||
|
else:
|
||
|
lookup['ComparisonOperator'] = 'NULL'
|
||
|
# Special-case the ``BETWEEN`` case.
|
||
|
elif field_bits[-1] == 'between':
|
||
|
if len(value) == 2 and isinstance(value, (list, tuple)):
|
||
|
lookup['AttributeValueList'].append(
|
||
|
self._dynamizer.encode(value[0])
|
||
|
)
|
||
|
lookup['AttributeValueList'].append(
|
||
|
self._dynamizer.encode(value[1])
|
||
|
)
|
||
|
# Special-case the ``IN`` case
|
||
|
elif field_bits[-1] == 'in':
|
||
|
for val in value:
|
||
|
lookup['AttributeValueList'].append(self._dynamizer.encode(val))
|
||
|
else:
|
||
|
# Fix up the value for encoding, because it was built to only work
|
||
|
# with ``set``s.
|
||
|
if isinstance(value, (list, tuple)):
|
||
|
value = set(value)
|
||
|
lookup['AttributeValueList'].append(
|
||
|
self._dynamizer.encode(value)
|
||
|
)
|
||
|
|
||
|
# Finally, insert it into the filters.
|
||
|
filters[fieldname] = lookup
|
||
|
|
||
|
return filters
|
||
|
|
||
|
def query(self, limit=None, index=None, reverse=False, consistent=False,
|
||
|
attributes=None, max_page_size=None, **filter_kwargs):
|
||
|
"""
|
||
|
**WARNING:** This method is provided **strictly** for
|
||
|
backward-compatibility. It returns results in an incorrect order.
|
||
|
|
||
|
If you are writing new code, please use ``Table.query_2``.
|
||
|
"""
|
||
|
reverse = not reverse
|
||
|
return self.query_2(limit=limit, index=index, reverse=reverse,
|
||
|
consistent=consistent, attributes=attributes,
|
||
|
max_page_size=max_page_size, **filter_kwargs)
|
||
|
|
||
|
def query_2(self, limit=None, index=None, reverse=False,
|
||
|
consistent=False, attributes=None, max_page_size=None,
|
||
|
query_filter=None, conditional_operator=None,
|
||
|
**filter_kwargs):
|
||
|
"""
|
||
|
Queries for a set of matching items in a DynamoDB table.
|
||
|
|
||
|
Queries can be performed against a hash key, a hash+range key or
|
||
|
against any data stored in your local secondary indexes. Query filters
|
||
|
can be used to filter on arbitrary fields.
|
||
|
|
||
|
**Note** - You can not query against arbitrary fields within the data
|
||
|
stored in DynamoDB unless you specify ``query_filter`` values.
|
||
|
|
||
|
To specify the filters of the items you'd like to get, you can specify
|
||
|
the filters as kwargs. Each filter kwarg should follow the pattern
|
||
|
``<fieldname>__<filter_operation>=<value_to_look_for>``. Query filters
|
||
|
are specified in the same way.
|
||
|
|
||
|
Optionally accepts a ``limit`` parameter, which should be an integer
|
||
|
count of the total number of items to return. (Default: ``None`` -
|
||
|
all results)
|
||
|
|
||
|
Optionally accepts an ``index`` parameter, which should be a string of
|
||
|
name of the local secondary index you want to query against.
|
||
|
(Default: ``None``)
|
||
|
|
||
|
Optionally accepts a ``reverse`` parameter, which will present the
|
||
|
results in reverse order. (Default: ``False`` - normal order)
|
||
|
|
||
|
Optionally accepts a ``consistent`` parameter, which should be a
|
||
|
boolean. If you provide ``True``, it will force a consistent read of
|
||
|
the data (more expensive). (Default: ``False`` - use eventually
|
||
|
consistent reads)
|
||
|
|
||
|
Optionally accepts a ``attributes`` parameter, which should be a
|
||
|
tuple. If you provide any attributes only these will be fetched
|
||
|
from DynamoDB. This uses the ``AttributesToGet`` and set's
|
||
|
``Select`` to ``SPECIFIC_ATTRIBUTES`` API.
|
||
|
|
||
|
Optionally accepts a ``max_page_size`` parameter, which should be an
|
||
|
integer count of the maximum number of items to retrieve
|
||
|
**per-request**. This is useful in making faster requests & prevent
|
||
|
the scan from drowning out other queries. (Default: ``None`` -
|
||
|
fetch as many as DynamoDB will return)
|
||
|
|
||
|
Optionally accepts a ``query_filter`` which is a dictionary of filter
|
||
|
conditions against any arbitrary field in the returned data.
|
||
|
|
||
|
Optionally accepts a ``conditional_operator`` which applies to the
|
||
|
query filter conditions:
|
||
|
|
||
|
+ `AND` - True if all filter conditions evaluate to true (default)
|
||
|
+ `OR` - True if at least one filter condition evaluates to true
|
||
|
|
||
|
Returns a ``ResultSet`` containing ``Item``s, which transparently handles the pagination of
|
||
|
results you get back.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# Look for last names equal to "Doe".
|
||
|
>>> results = users.query(last_name__eq='Doe')
|
||
|
>>> for res in results:
|
||
|
... print res['first_name']
|
||
|
'John'
|
||
|
'Jane'
|
||
|
|
||
|
# Look for last names beginning with "D", in reverse order, limit 3.
|
||
|
>>> results = users.query(
|
||
|
... last_name__beginswith='D',
|
||
|
... reverse=True,
|
||
|
... limit=3
|
||
|
... )
|
||
|
>>> for res in results:
|
||
|
... print res['first_name']
|
||
|
'Alice'
|
||
|
'Jane'
|
||
|
'John'
|
||
|
|
||
|
# Use an LSI & a consistent read.
|
||
|
>>> results = users.query(
|
||
|
... date_joined__gte=1236451000,
|
||
|
... owner__eq=1,
|
||
|
... index='DateJoinedIndex',
|
||
|
... consistent=True
|
||
|
... )
|
||
|
>>> for res in results:
|
||
|
... print res['first_name']
|
||
|
'Alice'
|
||
|
'Bob'
|
||
|
'John'
|
||
|
'Fred'
|
||
|
|
||
|
# Filter by non-indexed field(s)
|
||
|
>>> results = users.query(
|
||
|
... last_name__eq='Doe',
|
||
|
... reverse=True,
|
||
|
... query_filter={
|
||
|
... 'first_name__beginswith': 'A'
|
||
|
... }
|
||
|
... )
|
||
|
>>> for res in results:
|
||
|
... print res['first_name'] + ' ' + res['last_name']
|
||
|
'Alice Doe'
|
||
|
|
||
|
"""
|
||
|
if self.schema:
|
||
|
if len(self.schema) == 1:
|
||
|
if len(filter_kwargs) <= 1:
|
||
|
if not self.global_indexes or not len(self.global_indexes):
|
||
|
# If the schema only has one field, there's <= 1 filter
|
||
|
# param & no Global Secondary Indexes, this is user
|
||
|
# error. Bail early.
|
||
|
raise exceptions.QueryError(
|
||
|
"You must specify more than one key to filter on."
|
||
|
)
|
||
|
|
||
|
if attributes is not None:
|
||
|
select = 'SPECIFIC_ATTRIBUTES'
|
||
|
else:
|
||
|
select = None
|
||
|
|
||
|
results = ResultSet(
|
||
|
max_page_size=max_page_size
|
||
|
)
|
||
|
kwargs = filter_kwargs.copy()
|
||
|
kwargs.update({
|
||
|
'limit': limit,
|
||
|
'index': index,
|
||
|
'reverse': reverse,
|
||
|
'consistent': consistent,
|
||
|
'select': select,
|
||
|
'attributes_to_get': attributes,
|
||
|
'query_filter': query_filter,
|
||
|
'conditional_operator': conditional_operator,
|
||
|
})
|
||
|
results.to_call(self._query, **kwargs)
|
||
|
return results
|
||
|
|
||
|
def query_count(self, index=None, consistent=False, conditional_operator=None,
|
||
|
query_filter=None, scan_index_forward=True, limit=None,
|
||
|
exclusive_start_key=None, **filter_kwargs):
|
||
|
"""
|
||
|
Queries the exact count of matching items in a DynamoDB table.
|
||
|
|
||
|
Queries can be performed against a hash key, a hash+range key or
|
||
|
against any data stored in your local secondary indexes. Query filters
|
||
|
can be used to filter on arbitrary fields.
|
||
|
|
||
|
To specify the filters of the items you'd like to get, you can specify
|
||
|
the filters as kwargs. Each filter kwarg should follow the pattern
|
||
|
``<fieldname>__<filter_operation>=<value_to_look_for>``. Query filters
|
||
|
are specified in the same way.
|
||
|
|
||
|
Optionally accepts an ``index`` parameter, which should be a string of
|
||
|
name of the local secondary index you want to query against.
|
||
|
(Default: ``None``)
|
||
|
|
||
|
Optionally accepts a ``consistent`` parameter, which should be a
|
||
|
boolean. If you provide ``True``, it will force a consistent read of
|
||
|
the data (more expensive). (Default: ``False`` - use eventually
|
||
|
consistent reads)
|
||
|
|
||
|
Optionally accepts a ``query_filter`` which is a dictionary of filter
|
||
|
conditions against any arbitrary field in the returned data.
|
||
|
|
||
|
Optionally accepts a ``conditional_operator`` which applies to the
|
||
|
query filter conditions:
|
||
|
|
||
|
+ `AND` - True if all filter conditions evaluate to true (default)
|
||
|
+ `OR` - True if at least one filter condition evaluates to true
|
||
|
|
||
|
Optionally accept a ``exclusive_start_key`` which is used to get
|
||
|
the remaining items when a query cannot return the complete count.
|
||
|
|
||
|
Returns an integer which represents the exact amount of matched
|
||
|
items.
|
||
|
|
||
|
:type scan_index_forward: boolean
|
||
|
:param scan_index_forward: Specifies ascending (true) or descending
|
||
|
(false) traversal of the index. DynamoDB returns results reflecting
|
||
|
the requested order determined by the range key. If the data type
|
||
|
is Number, the results are returned in numeric order. For String,
|
||
|
the results are returned in order of ASCII character code values.
|
||
|
For Binary, DynamoDB treats each byte of the binary data as
|
||
|
unsigned when it compares binary values.
|
||
|
|
||
|
If ScanIndexForward is not specified, the results are returned in
|
||
|
ascending order.
|
||
|
|
||
|
:type limit: integer
|
||
|
:param limit: The maximum number of items to evaluate (not necessarily
|
||
|
the number of matching items).
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# Look for last names equal to "Doe".
|
||
|
>>> users.query_count(last_name__eq='Doe')
|
||
|
5
|
||
|
|
||
|
# Use an LSI & a consistent read.
|
||
|
>>> users.query_count(
|
||
|
... date_joined__gte=1236451000,
|
||
|
... owner__eq=1,
|
||
|
... index='DateJoinedIndex',
|
||
|
... consistent=True
|
||
|
... )
|
||
|
2
|
||
|
|
||
|
"""
|
||
|
key_conditions = self._build_filters(
|
||
|
filter_kwargs,
|
||
|
using=QUERY_OPERATORS
|
||
|
)
|
||
|
|
||
|
built_query_filter = self._build_filters(
|
||
|
query_filter,
|
||
|
using=FILTER_OPERATORS
|
||
|
)
|
||
|
|
||
|
count_buffer = 0
|
||
|
last_evaluated_key = exclusive_start_key
|
||
|
|
||
|
while True:
|
||
|
raw_results = self.connection.query(
|
||
|
self.table_name,
|
||
|
index_name=index,
|
||
|
consistent_read=consistent,
|
||
|
select='COUNT',
|
||
|
key_conditions=key_conditions,
|
||
|
query_filter=built_query_filter,
|
||
|
conditional_operator=conditional_operator,
|
||
|
limit=limit,
|
||
|
scan_index_forward=scan_index_forward,
|
||
|
exclusive_start_key=last_evaluated_key
|
||
|
)
|
||
|
|
||
|
count_buffer += int(raw_results.get('Count', 0))
|
||
|
last_evaluated_key = raw_results.get('LastEvaluatedKey')
|
||
|
if not last_evaluated_key or count_buffer < 1:
|
||
|
break
|
||
|
|
||
|
return count_buffer
|
||
|
|
||
|
def _query(self, limit=None, index=None, reverse=False, consistent=False,
|
||
|
exclusive_start_key=None, select=None, attributes_to_get=None,
|
||
|
query_filter=None, conditional_operator=None, **filter_kwargs):
|
||
|
"""
|
||
|
The internal method that performs the actual queries. Used extensively
|
||
|
by ``ResultSet`` to perform each (paginated) request.
|
||
|
"""
|
||
|
kwargs = {
|
||
|
'limit': limit,
|
||
|
'index_name': index,
|
||
|
'consistent_read': consistent,
|
||
|
'select': select,
|
||
|
'attributes_to_get': attributes_to_get,
|
||
|
'conditional_operator': conditional_operator,
|
||
|
}
|
||
|
|
||
|
if reverse:
|
||
|
kwargs['scan_index_forward'] = False
|
||
|
|
||
|
if exclusive_start_key:
|
||
|
kwargs['exclusive_start_key'] = {}
|
||
|
|
||
|
for key, value in exclusive_start_key.items():
|
||
|
kwargs['exclusive_start_key'][key] = \
|
||
|
self._dynamizer.encode(value)
|
||
|
|
||
|
# Convert the filters into something we can actually use.
|
||
|
kwargs['key_conditions'] = self._build_filters(
|
||
|
filter_kwargs,
|
||
|
using=QUERY_OPERATORS
|
||
|
)
|
||
|
|
||
|
kwargs['query_filter'] = self._build_filters(
|
||
|
query_filter,
|
||
|
using=FILTER_OPERATORS
|
||
|
)
|
||
|
|
||
|
raw_results = self.connection.query(
|
||
|
self.table_name,
|
||
|
**kwargs
|
||
|
)
|
||
|
results = []
|
||
|
last_key = None
|
||
|
|
||
|
for raw_item in raw_results.get('Items', []):
|
||
|
item = Item(self)
|
||
|
item.load({
|
||
|
'Item': raw_item,
|
||
|
})
|
||
|
results.append(item)
|
||
|
|
||
|
if raw_results.get('LastEvaluatedKey', None):
|
||
|
last_key = {}
|
||
|
|
||
|
for key, value in raw_results['LastEvaluatedKey'].items():
|
||
|
last_key[key] = self._dynamizer.decode(value)
|
||
|
|
||
|
return {
|
||
|
'results': results,
|
||
|
'last_key': last_key,
|
||
|
}
|
||
|
|
||
|
def scan(self, limit=None, segment=None, total_segments=None,
|
||
|
max_page_size=None, attributes=None, conditional_operator=None,
|
||
|
**filter_kwargs):
|
||
|
"""
|
||
|
Scans across all items within a DynamoDB table.
|
||
|
|
||
|
Scans can be performed against a hash key or a hash+range key. You can
|
||
|
additionally filter the results after the table has been read but
|
||
|
before the response is returned by using query filters.
|
||
|
|
||
|
To specify the filters of the items you'd like to get, you can specify
|
||
|
the filters as kwargs. Each filter kwarg should follow the pattern
|
||
|
``<fieldname>__<filter_operation>=<value_to_look_for>``.
|
||
|
|
||
|
Optionally accepts a ``limit`` parameter, which should be an integer
|
||
|
count of the total number of items to return. (Default: ``None`` -
|
||
|
all results)
|
||
|
|
||
|
Optionally accepts a ``segment`` parameter, which should be an integer
|
||
|
of the segment to retrieve on. Please see the documentation about
|
||
|
Parallel Scans (Default: ``None`` - no segments)
|
||
|
|
||
|
Optionally accepts a ``total_segments`` parameter, which should be an
|
||
|
integer count of number of segments to divide the table into.
|
||
|
Please see the documentation about Parallel Scans (Default: ``None`` -
|
||
|
no segments)
|
||
|
|
||
|
Optionally accepts a ``max_page_size`` parameter, which should be an
|
||
|
integer count of the maximum number of items to retrieve
|
||
|
**per-request**. This is useful in making faster requests & prevent
|
||
|
the scan from drowning out other queries. (Default: ``None`` -
|
||
|
fetch as many as DynamoDB will return)
|
||
|
|
||
|
Optionally accepts an ``attributes`` parameter, which should be a
|
||
|
tuple. If you provide any attributes only these will be fetched
|
||
|
from DynamoDB. This uses the ``AttributesToGet`` and set's
|
||
|
``Select`` to ``SPECIFIC_ATTRIBUTES`` API.
|
||
|
|
||
|
Returns a ``ResultSet``, which transparently handles the pagination of
|
||
|
results you get back.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
# All results.
|
||
|
>>> everything = users.scan()
|
||
|
|
||
|
# Look for last names beginning with "D".
|
||
|
>>> results = users.scan(last_name__beginswith='D')
|
||
|
>>> for res in results:
|
||
|
... print res['first_name']
|
||
|
'Alice'
|
||
|
'John'
|
||
|
'Jane'
|
||
|
|
||
|
# Use an ``IN`` filter & limit.
|
||
|
>>> results = users.scan(
|
||
|
... age__in=[25, 26, 27, 28, 29],
|
||
|
... limit=1
|
||
|
... )
|
||
|
>>> for res in results:
|
||
|
... print res['first_name']
|
||
|
'Alice'
|
||
|
|
||
|
"""
|
||
|
results = ResultSet(
|
||
|
max_page_size=max_page_size
|
||
|
)
|
||
|
kwargs = filter_kwargs.copy()
|
||
|
kwargs.update({
|
||
|
'limit': limit,
|
||
|
'segment': segment,
|
||
|
'total_segments': total_segments,
|
||
|
'attributes': attributes,
|
||
|
'conditional_operator': conditional_operator,
|
||
|
})
|
||
|
results.to_call(self._scan, **kwargs)
|
||
|
return results
|
||
|
|
||
|
def _scan(self, limit=None, exclusive_start_key=None, segment=None,
|
||
|
total_segments=None, attributes=None, conditional_operator=None,
|
||
|
**filter_kwargs):
|
||
|
"""
|
||
|
The internal method that performs the actual scan. Used extensively
|
||
|
by ``ResultSet`` to perform each (paginated) request.
|
||
|
"""
|
||
|
kwargs = {
|
||
|
'limit': limit,
|
||
|
'segment': segment,
|
||
|
'total_segments': total_segments,
|
||
|
'attributes_to_get': attributes,
|
||
|
'conditional_operator': conditional_operator,
|
||
|
}
|
||
|
|
||
|
if exclusive_start_key:
|
||
|
kwargs['exclusive_start_key'] = {}
|
||
|
|
||
|
for key, value in exclusive_start_key.items():
|
||
|
kwargs['exclusive_start_key'][key] = \
|
||
|
self._dynamizer.encode(value)
|
||
|
|
||
|
# Convert the filters into something we can actually use.
|
||
|
kwargs['scan_filter'] = self._build_filters(
|
||
|
filter_kwargs,
|
||
|
using=FILTER_OPERATORS
|
||
|
)
|
||
|
|
||
|
raw_results = self.connection.scan(
|
||
|
self.table_name,
|
||
|
**kwargs
|
||
|
)
|
||
|
results = []
|
||
|
last_key = None
|
||
|
|
||
|
for raw_item in raw_results.get('Items', []):
|
||
|
item = Item(self)
|
||
|
item.load({
|
||
|
'Item': raw_item,
|
||
|
})
|
||
|
results.append(item)
|
||
|
|
||
|
if raw_results.get('LastEvaluatedKey', None):
|
||
|
last_key = {}
|
||
|
|
||
|
for key, value in raw_results['LastEvaluatedKey'].items():
|
||
|
last_key[key] = self._dynamizer.decode(value)
|
||
|
|
||
|
return {
|
||
|
'results': results,
|
||
|
'last_key': last_key,
|
||
|
}
|
||
|
|
||
|
def batch_get(self, keys, consistent=False, attributes=None):
|
||
|
"""
|
||
|
Fetches many specific items in batch from a table.
|
||
|
|
||
|
Requires a ``keys`` parameter, which should be a list of dictionaries.
|
||
|
Each dictionary should consist of the keys values to specify.
|
||
|
|
||
|
Optionally accepts a ``consistent`` parameter, which should be a
|
||
|
boolean. If you provide ``True``, a strongly consistent read will be
|
||
|
used. (Default: False)
|
||
|
|
||
|
Optionally accepts an ``attributes`` parameter, which should be a
|
||
|
tuple. If you provide any attributes only these will be fetched
|
||
|
from DynamoDB.
|
||
|
|
||
|
Returns a ``ResultSet``, which transparently handles the pagination of
|
||
|
results you get back.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> results = users.batch_get(keys=[
|
||
|
... {
|
||
|
... 'username': 'johndoe',
|
||
|
... },
|
||
|
... {
|
||
|
... 'username': 'jane',
|
||
|
... },
|
||
|
... {
|
||
|
... 'username': 'fred',
|
||
|
... },
|
||
|
... ])
|
||
|
>>> for res in results:
|
||
|
... print res['first_name']
|
||
|
'John'
|
||
|
'Jane'
|
||
|
'Fred'
|
||
|
|
||
|
"""
|
||
|
# We pass the keys to the constructor instead, so it can maintain it's
|
||
|
# own internal state as to what keys have been processed.
|
||
|
results = BatchGetResultSet(keys=keys, max_batch_get=self.max_batch_get)
|
||
|
results.to_call(self._batch_get, consistent=consistent, attributes=attributes)
|
||
|
return results
|
||
|
|
||
|
def _batch_get(self, keys, consistent=False, attributes=None):
|
||
|
"""
|
||
|
The internal method that performs the actual batch get. Used extensively
|
||
|
by ``BatchGetResultSet`` to perform each (paginated) request.
|
||
|
"""
|
||
|
items = {
|
||
|
self.table_name: {
|
||
|
'Keys': [],
|
||
|
},
|
||
|
}
|
||
|
|
||
|
if consistent:
|
||
|
items[self.table_name]['ConsistentRead'] = True
|
||
|
|
||
|
if attributes is not None:
|
||
|
items[self.table_name]['AttributesToGet'] = attributes
|
||
|
|
||
|
for key_data in keys:
|
||
|
raw_key = {}
|
||
|
|
||
|
for key, value in key_data.items():
|
||
|
raw_key[key] = self._dynamizer.encode(value)
|
||
|
|
||
|
items[self.table_name]['Keys'].append(raw_key)
|
||
|
|
||
|
raw_results = self.connection.batch_get_item(request_items=items)
|
||
|
results = []
|
||
|
unprocessed_keys = []
|
||
|
|
||
|
for raw_item in raw_results['Responses'].get(self.table_name, []):
|
||
|
item = Item(self)
|
||
|
item.load({
|
||
|
'Item': raw_item,
|
||
|
})
|
||
|
results.append(item)
|
||
|
|
||
|
raw_unprocessed = raw_results.get('UnprocessedKeys', {}).get(self.table_name, {})
|
||
|
|
||
|
for raw_key in raw_unprocessed.get('Keys', []):
|
||
|
py_key = {}
|
||
|
|
||
|
for key, value in raw_key.items():
|
||
|
py_key[key] = self._dynamizer.decode(value)
|
||
|
|
||
|
unprocessed_keys.append(py_key)
|
||
|
|
||
|
return {
|
||
|
'results': results,
|
||
|
# NEVER return a ``last_key``. Just in-case any part of
|
||
|
# ``ResultSet`` peeks through, since much of the
|
||
|
# original underlying implementation is based on this key.
|
||
|
'last_key': None,
|
||
|
'unprocessed_keys': unprocessed_keys,
|
||
|
}
|
||
|
|
||
|
def count(self):
|
||
|
"""
|
||
|
Returns a (very) eventually consistent count of the number of items
|
||
|
in a table.
|
||
|
|
||
|
Lag time is about 6 hours, so don't expect a high degree of accuracy.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> users.count()
|
||
|
6
|
||
|
|
||
|
"""
|
||
|
info = self.describe()
|
||
|
return info['Table'].get('ItemCount', 0)
|
||
|
|
||
|
|
||
|
class BatchTable(object):
|
||
|
"""
|
||
|
Used by ``Table`` as the context manager for batch writes.
|
||
|
|
||
|
You likely don't want to try to use this object directly.
|
||
|
"""
|
||
|
def __init__(self, table):
|
||
|
self.table = table
|
||
|
self._to_put = []
|
||
|
self._to_delete = []
|
||
|
self._unprocessed = []
|
||
|
|
||
|
def __enter__(self):
|
||
|
return self
|
||
|
|
||
|
def __exit__(self, type, value, traceback):
|
||
|
if self._to_put or self._to_delete:
|
||
|
# Flush anything that's left.
|
||
|
self.flush()
|
||
|
|
||
|
if self._unprocessed:
|
||
|
# Finally, handle anything that wasn't processed.
|
||
|
self.resend_unprocessed()
|
||
|
|
||
|
def put_item(self, data, overwrite=False):
|
||
|
self._to_put.append(data)
|
||
|
|
||
|
if self.should_flush():
|
||
|
self.flush()
|
||
|
|
||
|
def delete_item(self, **kwargs):
|
||
|
self._to_delete.append(kwargs)
|
||
|
|
||
|
if self.should_flush():
|
||
|
self.flush()
|
||
|
|
||
|
def should_flush(self):
|
||
|
if len(self._to_put) + len(self._to_delete) == 25:
|
||
|
return True
|
||
|
|
||
|
return False
|
||
|
|
||
|
def flush(self):
|
||
|
batch_data = {
|
||
|
self.table.table_name: [
|
||
|
# We'll insert data here shortly.
|
||
|
],
|
||
|
}
|
||
|
|
||
|
for put in self._to_put:
|
||
|
item = Item(self.table, data=put)
|
||
|
batch_data[self.table.table_name].append({
|
||
|
'PutRequest': {
|
||
|
'Item': item.prepare_full(),
|
||
|
}
|
||
|
})
|
||
|
|
||
|
for delete in self._to_delete:
|
||
|
batch_data[self.table.table_name].append({
|
||
|
'DeleteRequest': {
|
||
|
'Key': self.table._encode_keys(delete),
|
||
|
}
|
||
|
})
|
||
|
|
||
|
resp = self.table.connection.batch_write_item(batch_data)
|
||
|
self.handle_unprocessed(resp)
|
||
|
|
||
|
self._to_put = []
|
||
|
self._to_delete = []
|
||
|
return True
|
||
|
|
||
|
def handle_unprocessed(self, resp):
|
||
|
if len(resp.get('UnprocessedItems', [])):
|
||
|
table_name = self.table.table_name
|
||
|
unprocessed = resp['UnprocessedItems'].get(table_name, [])
|
||
|
|
||
|
# Some items have not been processed. Stow them for now &
|
||
|
# re-attempt processing on ``__exit__``.
|
||
|
msg = "%s items were unprocessed. Storing for later."
|
||
|
boto.log.info(msg % len(unprocessed))
|
||
|
self._unprocessed.extend(unprocessed)
|
||
|
|
||
|
def resend_unprocessed(self):
|
||
|
# If there are unprocessed records (for instance, the user was over
|
||
|
# their throughput limitations), iterate over them & send until they're
|
||
|
# all there.
|
||
|
boto.log.info(
|
||
|
"Re-sending %s unprocessed items." % len(self._unprocessed)
|
||
|
)
|
||
|
|
||
|
while len(self._unprocessed):
|
||
|
# Again, do 25 at a time.
|
||
|
to_resend = self._unprocessed[:25]
|
||
|
# Remove them from the list.
|
||
|
self._unprocessed = self._unprocessed[25:]
|
||
|
batch_data = {
|
||
|
self.table.table_name: to_resend
|
||
|
}
|
||
|
boto.log.info("Sending %s items" % len(to_resend))
|
||
|
resp = self.table.connection.batch_write_item(batch_data)
|
||
|
self.handle_unprocessed(resp)
|
||
|
boto.log.info(
|
||
|
"%s unprocessed items left" % len(self._unprocessed)
|
||
|
)
|